
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

1

A Generalized Framework for Auto-tuning
Stencil Computations

Shoaib Kamil1,3, Cy Chan4, Samuel Williams1,
Leonid Oliker1, John Shalf1,2, Mark Howison3,

E. Wes Bethel1, Prabhat1

 1Lawrence Berkeley National Laboratory (LBNL)
 2National Energy Research Scientific Computing Center (NERSC)
 3EECS Department, University of California, Berkeley (UCB)
 4CSAIL, Massachusetts Institute of Technology (MIT)

SAKamil@lbl.gov

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

2

The Challenge:
Productive Implementation

of an Auto-tuner

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Conventional Optimization

  Take one kernel/application
  Perform some analysis of it
  Research the literature for appropriate optimizations
  Implement a couple of them by hand optimizing for one target machine.
  Iterate a couple of times.

  Result:
 improve performance for one kernel on one computer.

3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Conventional Auto-tuning

  Automate the code generation and tuning process.
  Perform some analysis of the kernel
  Research the literature for appropriate optimizations
  implement a code generator and search benchmark
  explore optimization space
  report best implementation/parameters

  Result:
 significantly improve performance for one kernel on any computer.
 i.e. provides performance portability

  Downside:
  autotuner creation time is substantial
  must reinvent the wheel for every kernel

4

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Generalized Frameworks
for Auto-tuning

  Integrate some of the code transformation features of a compiler
with the domain-specific optimization knowledge of an auto-tuner
  parse high-level source
  apply transformations allowed by the domain, but not necessarily safe

based on language semantics alone
  generate code + auto-tuning benchmark
  explore optimization space
  report best implementation/parameters

  Result:
 significantly improve performance for any kernel on any computer
for a domain or motif.
 i.e. performance portability without sacrificing productivity

5

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

1.  Stencils
2.  Machines
3.  Framework
4.  Results
5.  Conclusions

6

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

7

Benchmark Stencils
•  Laplacian
•  Divergence
•  Gradient
•  Bilateral Filtering

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

What’s a stencil ?

  Nearest neighbor computations on structured grids (1D…ND array)

  stencils from PDEs are often a weighted linear combination
 of neighboring values

  cases where weights vary in space/time
  stencil can also result in a table lookup
  stencils can be nonlinear operators

  caveat: We only examine implementations like Jacobi’s Method
 (i.e. separate read and write arrays)

8

i,j,k i+1,j,k i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Laplacian Differential Operator

  7-point stencil on scalar grid, produces a scalar grid

  Substantial reuse (+high working set size)
  Memory-intensive kernel
  Elimination of capacity misses may improve performance by 66%

9

xy product

write_array[]

x dimension read_array[]

u’

u

i,j,k i+1,j,k i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Divergence Differential Operator

  6-point stencil on a vector grid, produces a scalar grid

  Low reuse per component.
  Only z-component demands a large working set
  Memory-intensive kernel
  Elimination of capacity misses may improve performance by 40%

10

read_array[][] x dimension

write_array[]

xy product

x
y
z

u

i+1,j,k i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Gradient Differential Operator

  6-point stencil on a scalar grid, produces a vector grid

  High reuse (like laplacian)
  High working set size
  three write streams (+ write allocation streams) = 7 total streams
  Memory-intensive kernel
  Elimination of capacity misses may improve performance by 30%

11

write_array[][]

x dimension read_array[]

xy product

x
y
z

u

i+1,j,k i-1,j,k

i,j+1,k

i,j,k+1

i,j,k-1

i,j-1,k

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

3D Bilateral Filtering

  Extracted from a medical imaging application (MRI
processing)

  Normal Gaussian stencils smooth images,
 but destroy sharp edges.

  This kernel performs anistropic filtering thus preserving
edges.

  We may scale the size of the stencil (radius=3,5)
  73-pt or 113-pt stencils.
  apply to dataset of 192 x 256x256 slices
  originally 8-bit grayscale voxels, but processed as 32-bit floats

12

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

3D Bilateral Filtering
(pseudo code)

  Each point in the stencil mandates a voxel-dependent indirection,
 and each stencil also requires one divide.

 for all points (xyz) in x,y,z{

 voxelSum = 0

 weightSum = 0

 srcVoxel = src[xyz]

 for all neighbors (ijk) within radius of xyz{

 neighborVoxel = src[ijk]

 neighborWeight = table2[ijk]*table1[neighborVoxel-srcVoxel]

 voxelSum +=neighborWeight*neighborVoxel

 weightSum+=neighborWeight

 }

 dstVoxel = voxelSum/weightSum

 }

  Large radii results in extremely compute-intensive kernels with large
working sets

13

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

14

Benchmark Machines

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multicore SMPs

  Experiments only explored parallelism within an SMP
  We use a Sun X2200 M2 as a proxy for the XT5 (e.g. Jaguar)
  We use a Nehalem machine as a proxy for possible future Cray

machines.
  Barcelona/Nehalem are NUMA

15

6 x 1066MHz
DDR3 DIMMs

25.6 GB/s

3x64b controllers

Q
u

ic
k
P

a
th

M
T

 C
o

re

M
T

 C
o

re

M
T

 C
o

re

M
T

 C
o

re

2
5

6
K

2
5

6
K

2
5

6
K

2
5

6
K

8MB shared
L3

6 x 1066MHz
DDR3 DIMMs

25.6 GB/s

3x64b controllers

Q
u

ic
k
P

a
th

M
T

 C
o

re

M
T

 C
o

re

M
T

 C
o

re

M
T

 C
o

re

2
5

6
K

2
5

6
K

2
5

6
K

2
5

6
K

8MB shared
L3

1
6

G
B

/s

(e
a
c
h
 d

ir
e

c
ti
o
n
)

800MHz DDR2 DIMMs

12.8 GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p

e
rT

ra
n

s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

4
G

B
/s

(e

a
c
h
 d

ir
e

c
ti
o
n
)

AMD Budapest (XT4) AMD Barcelona (X2200 M2) Intel Nehalem (X5550)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

16

Generalized Framework for
Auto-tuning Stencils

Copy and Paste auto-tuning

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Overview

Given a F95 implementation of an application:

1.  Programmer annotates target stencil loop nests
2.  Auto-tuning System:

  converts FORTRAN implementation into internal representation (AST)
  builds a test harness
  Strategy Engine iterates on:

•  apply optimization to internal representation
•  backend generation of optimized C code
•  compile C code
•  benchmark C code

  using best implementation, automatically produces a library for that
kernel/machine combination

3.  Programmer then updates application to call optimized library
routine

17

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Strategy Engine:
Auto-parallelization

  The strategy engines can auto-parallelize cache blocks among
hardware thread contexts.

  We use a single-program, multiple-data (SPMD) model implemented
with POSIX Threads (Pthreads).

  All threads are created at the beginning of the application.

  We also produce an initialization routine that exploits the first touch
policy to ensure proper NUMA-aware allocation.

18

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

+Y

+Z

(b)

Decomposition into

Thread Blocks

(c)

Decomposition into

Register Blocks

(a)

Decomposition of a Node Block

into a Chunk of Core Blocks

RY
RX

RZ

CY

C
Z

CX

TYTX

NY

N
Z

NX

+X
(unit stride)

TY

C
Z

TX

Strategy Engine:
Auto-tuning Optimizations

  Strategy Engine explores a number of auto-tuning optimizations:
  loop unrolling/register blocking
  cache blocking
  constant propagation / common subexpression elimination

  Future Work:
  cache bypass (e.g. movntpd)
  software prefetching
  SIMD intrinsics
  data structure transformations

19

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

20

Experimental Results

NOTE: threads are ordered to exploit:
 multiple threads within a core (Nehalem only),
 then multicore,
 then multiple sockets (Barcelona/Nehalem)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Laplacian Performance

  On the memory-bound architecture (Barcelona), auto-parallelization
doesn’t make a difference.

  Auto-tuning enables scalability.
  Barcelona is bandwidth-proportionally faster than the XT4.
  Nehalem is ~2.5x faster than Barcelona, and 4x faster than the XT4
  Auto-parallelization plus tuning significantly outperforms OpenMP.

21

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

 0

 1

 2

 3

 4

 5

1 2 4 8

G
Fl
op
/s

Threads

Barcelona

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16

G
Fl
op
/s

Threads

Nehalem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4

G
Fl
op
/s

Threads

XT4

Auto-NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Divergence Performance

  No changes to the framework were required (just drop in F95 code)
  As there was less reuse in the Divergence than in Laplacian, there are

fewer capacity misses.
  So auto-tuning has less to improve upon
  Nehalem is ~2.5x faster than Barcelona

22

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8

G
Fl
op
/s

Threads

Barcelona

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16

G
Fl
op
/s

Threads

Nehalem

 0

 0.5

 1

 1.5

 2

1 2 4

G
Fl
op
/s

Threads

XT4

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Gradient Performance

  No changes to the framework were required (just drop in F95 code)
  Gradient has moderate reuse, but a large number of output streams.
  Performance gains from auto-tuning are moderate (25-35%)
  Parallelization is only valuable in conjunction with auto-tuning

23

 0

 0.5

 1

 1.5

 2

1 2 4 8

G
Fl
op
/s

Threads

Barcelona

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 16

G
Fl
op
/s

Threads

Nehalem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4

G
Fl
op
/s

Threads

XT4

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

3D Bilateral Filter Performance
(radius=3)

  No changes to the framework were required (just drop in F95 code)
  Essentially a 7x7x7 (343-pt) stencil
  Performance is much more closely tied to GHz

 instead of GB/s.
  Auto-parallelization yielded near perfect parallel efficiency

 wrt cores on Barcelona/Nehalem (Nehalem has HyperThreading)
  Auto-tuning significantly outperformed OpenMP (75% on Nehalem)

24

 0

 2

 4

 6

 8

 10

 12

1 2 4 8

G
Fl
op
/s

Threads

Barcelona

 0

 5

 10

 15

 20

 25

1 2 4 8 16

G
Fl
op
/s

Threads

Nehalem

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4

G
Fl
op
/s

Threads

XT4

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

3D Bilateral Filter Performance
(radius=5)

  basically the same story as radius=3

  XT4/Nehalem delivered approximately same
performance as they did with radius=3

  Barcelona delivered somewhat better performance.

25

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4

G
Fl
op
/s

Threads

XT4

 0

 5

 10

 15

 20

1 2 4 8 16

G
Fl
op
/s

Threads

Nehalem

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8

G
Fl
op
/s

Threads

Barcelona

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

26

Summary

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary:
Framework for auto-tuning stencils

  Dramatic step forward in auto-tuning technology

  Although the framework required substantial up front work,
 it provides performance portability across the breadth of
architectures AND stencil kernels.

  Delivers very good performance, and well in excess of OpenMP.

  Future work will examine relevant optimizations
  e.g. cache bypass would significantly improve gradient performance.

27

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary:
Machine Comparison

 0

 2

 4

 6

 8

 10

 12

G
F
lo
p
/s

Laplacian

28

 0

 1

 2

 3

 4

 5

 6

 7

G
F
lo
p
/s

Divergence

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

G
F
lo
p
/s

Gradient

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

G
F

lo
p

/s

Bilateral Filter

  Barcelona delivers bandwidth-proportionally better performance on the
memory-intensive differential operators.

  Surprisingly, Barcelona delivers ~2.5x better performance on the compute
intensive bilateral filter.

  Nehalem clearly sustains dramatically better performance than either
Opteron.

  Despite having a 15% faster clock, nehalem realizes a much better bilateral
filter performance.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 29

Acknowledgements

  Research supported by DOE Office of Science under contract
number DE-AC02-05CH11231

  Microsoft (Award #024263)
  Intel (Award #024894)
  U.C. Discovery Matching Funds (Award #DIG07-10227)
  All XT4 simulations were performed on the XT4 (Franklin) at the

National Energy Research Scientific Computing Center (NERSC)

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

30

Questions?

